Phylogenetically Clustered Extinction Risks Do Not Substantially Prune the Tree of Life

نویسندگان

  • Rakesh K. Parhar
  • Arne Ø. Mooers
چکیده

Anthropogenic activities have increased the rate of biological extinction many-fold. Recent empirical studies suggest that projected extinction may lead to extensive loss to the Tree of Life, much more than if extinction were random. One suggested cause is that extinction risk is heritable (phylogenetically patterned), such that entire higher groups will be lost. We show here with simulation that phylogenetically clustered extinction risks are necessary but not sufficient for the extensive loss of phylogenetic diversity (PD) compared to random extinction. We simulated Yule trees and evolved extinction risks at various levels of heritability (measured using Pagel's λ). At most levels of heritability (λ in range of 0 to 10), mean values of extinction risk (range 0.25 to 0.75), tree sizes (64 to 128 tips), tree balance and temporal heterogeneity of diversification rates (Yule and coalescent trees), extinction risks do not substantially increase the loss of PD in these trees when compared to random extinction. The maximum loss of PD (20% above random) was only associated with the combination of extremely excessive values of phylogenetic signal, high mean species' extinction probabilities, and extreme (coalescent) tree shapes. Interestingly, we also observed a decline in the rate of increase in the loss of PD at high phylogenetic clustering (λ → 10) of extinction risks. Our results suggest that the interplay between various aspects of tree shape and a predisposition of higher extinction risks in species-poor clades is required to explain the substantial pruning of the Tree of Life.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anthropogenic extinction threats and future loss of evolutionary history in reef corals

Extinction always results in loss of phylogenetic diversity (PD), but phylogenetically selective extinctions have long been thought to disproportionately reduce PD. Recent simulations show that tree shapes also play an important role in determining the magnitude of PD loss, potentially offsetting the effects of clustered extinctions. While patterns of PD loss under different extinction scenario...

متن کامل

Revisiting the impacts of non-random extinction on the tree-of-life.

The tree-of-life represents the diversity of living organisms. Species extinction and the concomitant loss of branches from the tree-of-life is therefore a major conservation concern. There is increasing evidence indicating that extinction is phylogenetically non-random, such that if one species is vulnerable to extinction so too are its close relatives. However, the impact of non-random extinc...

متن کامل

Reconsidering the Loss of Evolutionary History: How Does Non-random Extinction Prune the Tree-of-Life?

Analysing extinction within a phylogenetic framework may seem counterintuitive because extinction is a priori a non-heritable trait. However, extinction risk is correlated with other traits, such as body size, that show a strong phylogenetic signal. Further, there has been much effort in identifying key traits important for diversifi cation, and recent evidence has demonstrated that the process...

متن کامل

Integrating data‐deficient species in analyses of evolutionary history loss

There is an increasing interest in measuring loss of phylogenetic diversity and evolutionary distinctiveness which together depict the evolutionary history of conservation interest. Those losses are assessed through the evolutionary relationships between species and species threat status or extinction probabilities. Yet, available information is not always sufficient to quantify the threat stat...

متن کامل

Invasive ants alter the phylogenetic structure of ant communities.

Invasive species displace native species and potentially alter the structure and function of ecological communities. In this study, we compared the generic composition of intact and invaded ant communities from 12 published studies and found that invasive ant species alter the phylogenetic structure of native ant communities. Intact ant communities were phylogenetically evenly dispersed, sugges...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011